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Statistical Concepts

Throughout the text reference is made to experiments of the sorts described in the previous section. All observations, whether made in the laboratory or in a naturalistic setting, must be organized, categorized, and summarized before any meaning can be attributed to them. This process of data compression produces numerical measures: for example, scores on a performance measure or a listing of heights and weights for the sample studied. These numerical measures describe the data collected; therefore they belong in the realm of descriptive statistics. Testing of hypotheses is done through the use of inferential statistics. In this section we shall discuss some concepts related to both descriptive and inferential statistics.  

Descriptive Statistics

Descriptive statistics techniques are used to summarize the data that are collected in an experiment and to communicate the findings of the experiment to the scientific community. A listing of various techniques employed in both descriptive statistics and inferential statistics is given in Table A-2. Since many of these terms are probably familiar to you, we shall review them only briefly in order to refresh your memory.

TABLE A-2 Statistical Concepts

Descriptive Statistics summarize and describe data.

Measures of central tendency:

mean--average of the scores

median--the middle score (50% of the scores are higher and 50% are lower)

mode--the most frequently occurring score

Measures of variability:

range--the difference between the lowest and the highest score

standard deviation--square root of the variance

variance--the sum of the squared deviations of the scores from the mean divided by the number of scores

Measures of association:

correlation coefficient--a measure of association between two variables

a factor--a cluster of test scores or items that are highly related to each other and not related to scores or items in other factors

Inferential Statistics are used to test hypotheses.

Random sample: a sample drawn from a population in such a way that every member of the population has an equal chance of being picked

Experimental group: the subjects receiving the experimental treatment

Control group: the subjects receiving no experimental treatment

Significance level: the probability that differences between the experimental and control groups at the end of the experiment are due to chance

t-test: technique used to assess differences between experimental and control groups in a two-group experiment

F-test: technique used to assess differences when more than two groups are tested or more than one variable is manipulated

Independent variable(s): the variable(s) manipulated in the experiment

Dependent variable(s): the variable(s) measured in the experiment

Measures of Central Tendency. One way to summarize data is through various measures of central tendency, each of which reflects to some degree the "typical" score. There are several such measures, including the mean, the median, and the mode. The mean is commonly employed to communicate differences between groups of subjects who vary according to age, sex, or experimental treatment. However, the mean may also be employed in a naturalistic experiment. Hence, by looking at the mean one is able to speak of scores increasing or decreasing as a function of age level, sex, or some other variable of interest. 

The median and the mode are less frequently employed. The median, which is used for dividing a distribution of scores into two equal groups of scores, is most frequently used to separate subjects into two groups for experimental purposes. For example, in a number of experiments children and adolescents have been divided into low-anxious and high-anxious groups by taking a median split on anxiety level (for example, Dusek & Hill, 1970). The investigators conducting these experiments wish to find out if the problem-solving strategies of low- and high-anxious subjects differ, and if these differences exist at various age levels. The mode is used primarily to describe a distribution of scores in order to highlight scores that are obtained relatively frequently. 

Measures of Variability. Just as there are measures of central tendencies, or similarities, in the scores obtained in an experiment, so too are there measures of variability. One measure of variability is simply the range of the scores, the highest to the lowest score. Obviously, this statistic provides some information about the scores but it doesn't tell us very much. 

In order to describe more completely the nature of the distribution of scores, psychologists use two measures: the standard deviation and the variance, the latter being the square of the former. The standard deviation and the variance are direct measures of the variability of all the scores within the distribution from the mean score. The smaller the standard deviation or variance, the more compact (closer to the mean) the distribution of scores, and the larger the standard deviation or variance, the more disparate the scores. In a bell-shaped distribution, 68 percent of the scores fall within plus or minus one standard deviation from the mean. For example, IQ tests are designed to have a mean score of 100, and a standard deviation of either 15 or 16. By knowing this information we know that a score of 116 is one standard deviation above, and a score of 84 one standard deviation below, the mean IQ. By knowing the mean of the distribution and the standard deviation of the scores, then, we are able to discern the relative position of any given score within the distribution. 

The final descriptive statistic we shall discuss is the correlation coefficient, denoted by r, which is a measure of the relationship between two scores derived from each subject. For example, we might wish to know the relationship between intelligence and school performance. In order to calculate this relationship we would need to have an IQ score on each subject as well as some measure of school performance. The correlation coefficient, then, allows us to determine how closely the two sets of scores, the IQ score and the school performance measure, are related.

The correlation coefficient may take on any value from －1 to + 1. The larger the absolute value of the number, that is, the number irrespective of the sign attached to it, the stronger the relationship. The smaller the absolute value of the number, the weaker the relationship. A correlation of 0 demonstrates that there is no relationship between the two sets of scores. A correlation of + 1 indicates that there is a perfect positive relationship between the scores. In our example of IQ scores, this means that the highest score on IQ is matched with the highest score on the school measure, and the lowest score on IQ is matched with the lowest score on the school measure, with all the intermediate scores falling in a perfect rank ordering. A correlation of –1 indicates that the highest IQ score goes with the lowest school performance score and the lowest IQ score with the highest school performance score, with all of the other intervening scores having the same perfect inverse relationship. In psychology, it is extremely rare to find correlations that are + l.0 or －1.0. We are much more used to dealing with correlations on the order of .5 or .6. These correlations indicate that there is some degree of relationship between the two scores but also that the two scores are somewhat independent. The major reason for calculating correlation coefficients is to use them for purposes of prediction. To continue with our IQ and school performance example, it is very helpful to know a child's IQ score in terms of predicting school performance because we know that IQ and school performance scores correlate approximately + .6 or + .7 (for example, Bond, 1940). If an adolescent is having problems dealing with a school curriculum, but his IQ is in the normal or better-than-normal range, we may wish to examine factors other than intelligence to try to discover why the student is having a problem. 

There are a number of cautions involved in interpreting correlation coefficients. First, one must be careful not to infer that simply because two variables are related (correlated), one somehow causes the other. Correlations are not measures of causation; they are simply measures of relationship. For example, if we give the same group of adolescents an IQ test at the age of 12 and then again at 18, we will find a correlation of about .76 (Honzik, Macfarlane & Allen, 1948). None of us would suggest that the IQ test given at 18 caused the performance at age 12. Nor is the reverse the case. Rather a certain set of abilities, motivating conditions, and other factors, perhaps unknown, cause the correlation. 

Second, the absolute value of the correlation coefficient, not its sign, determines its strength. The sign attached to the correlation coefficient simply tells the direction of the relationship. Correlations of －.6 and ＋.6 are equally strong, but in opposite directions. 

Finally, one must take care in interpreting the correlation coefficient in terms of its "realness." To clarify this point, let us take up again our example of IQ and school achievement. If we square the correlation coefficient, we have an estimate of the variability in school performance that is accounted for by IQ test performance. In our example, this variability will range somewhere between .36 (.6×.6 = .36) and .49 (.7×.7 = .49). In other words, only 36 to 49 percent of school performance can be accounted for by knowledge of the IQ. The remainder of the variability in school performance must be accounted for by other factors. Hence, although knowing the adolescent's IQ test score will help us deal with issues about the ability to handle school tasks, it is not a perfect predictor of performance. Unless the correlation is extremely high, for example, .95 to 1.0, one should look for other factors that might be related to the adolescent's ability to perform on some given task. A number of examples of correlational data are found in the text. 

Factor Analysis. Factor analysis is a tool frequently employed by investigators who want to describe a large number of measures by a smaller number of factors. Therefore, we shall try to explain briefly what factor analysis is and how it works. Suppose we administer a test containing nine items. We tabulate the scores and compute the correlations shown in part a of Table A--3. The entries in the bottom diagonal are all 1.0 because scores correlated with themselves always produce a perfect positive correlation. Examination of the remaining correlations indicates that the items show a high correlation in some instances and a low or zero correlation in others. Imagine a matrix with 50 or more items, producing 1225 correlations. How could one possibly absorb that much information? In such cases, factor analysis can be used to reduce information to a more manageable size by grouping together those items that are highly related. The items in each group correlate only minimally with items from other groups.

In part b of Table A--3 we have listed three factors for the matrix in part a. As you can see, the items in each cluster show high intercorrelations among themselves and low intercorrelations with items from the other clusters. Although we have oversimplified the procedure, the example does illustrate the basic purpose and technique of factor analysis. By examining the contents of the items included in each factor we can often label the factor, much as Guilford (for example, 1967) did in his studies of intellectual abilities, discussed in Chapter 5, or as Monge (1973) did in his studies of self concept, discussed in Chapter 12. 

As you can see, factor analysis is a powerful tool. An important thing to keep in mind is that factors are not "real." They exist only in our data. As you read factor analytic research in this or other texts, it is important to keep in mind that factors simply reduce information to a manageable size or amount. 

Inferential Statistics

Although the techniques of descriptive statistics are useful for categorizing and summarizing the data collected in any kind of study, they are not useful, in most cases, for testing hypotheses about the causes of behavior. Therefore, it is important to have some understanding of inferential statistics, which are used for this purpose. As with descriptive statistics, we shall make this discussion relatively brief. 

Inferential statistics permit us to go beyond a mere description of data and infer cause and effect relationships between the dependent variables we measure and the independent variables we manipulate. Consider, for example, a simple experimental design that involves only two groups of subjects. One group will be the experimental group, the group that will be subject to some kind of manipulation. The other group will be a control group, the group that will receive no manipulation. Let us further assume that we are interested in a group of adolescents, say, tenth-graders. Therefore, we go to a large school, take the names of all the tenth-graders in the school, put them in a hat, and then randomly draw 50 names for each of our two groups. 

We have now selected a random sample of subjects; that is, a sample of subjects picked from a given population in such a way that everyone in the population has an equal chance of being selected. The population we are talking about is the population of tenth-graders in a single school; it is not the population of all tenth-graders in the United States. Nevertheless it is, to some extent, representative of the larger population. 

When we pick two random samples in this fashion, we may assume logically that if we were to measure them at the start of the experiment on any of a number of variables, the two groups would be very similar. For example, each group will have about the same number of males and females, each should have the same number of good and poor students, and each should have roughly equivalent average height, weight, and intelligence levels. The larger the random sample, the more likely this is to be the case. Moreover, each random sample drawn from a given population will be representative of the larger population from which it is drawn, again with the proviso that the larger the random sample, the greater the degree to which it will reflect characteristics of the larger population. 

Since we have two comparable random samples at the start of the experiment, we may assume that any differences in their performance at the conclusion of the experiment must be due to our experimental manipulation and nothing else. If this is the case, then, we have through our manipulation identified a cause of behavior or a factor that underlies performance in some given task. To the extent that our random samples accurately reflect the larger population, we may generalize the results of the experiment to the larger population. 

As we noted above, the factor that we manipulate is called the independent variable. The measure that we take is on the dependent variable. Our interest, then, is in the performance of the experimental group and the control group on the dependent variable. Do they perform similarly or differently? 

Following the completion of the experiment, inferential-statistics techniques are used to evaluate the difference between the experimental and the control group. The logic of inferential statistics says that if the results of our experiment demonstrate a difference in performance between the experimental and control groups, we may assume that a true cause and effect relationship exists between the independent and dependent variables. Also inherent in the logic of inferential statistics is the concept of error--that because of chance factors, the samples we have selected are not exactly representative of the larger population, and therefore will yield erroneous data. In general, we are willing to accept the results obtained if we can prove (mathematically)* that there is only a 5 percent chance that the independent variable had no effect. Obviously, with a probability of error of 5 in 100, we may be incorrect in our assumption. However, since we have conducted only one experiment, we will accept this error level and rely on replication of the results to demonstrate if we are wrong.

When we talk about significant differences, or levels of significance, we are talking of differences that would occur by chance only 5 percent of the time. Sometimes the mathematical formula reveals an even smaller probability-of-error statistic. You will see such statistics on the tables in this text (p = .01, p = .02). This means that there is only a very small probability (1 out of 100 or 2 out of 100) that the results are erroneous. The important point to understand is that by manipulating potential causes of behavior (independent variables) in an experiment, and then demonstrating that the manipulation produced differences in the performance (dependent variable) of the experimental and control groups, we are able to determine the causes of behavior.
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